

Design for Operations Space Shuttle vs. Sea Launch

Bo Bejmuk

Shuttle

Space Shuttle designed for ascent performance, multi functionality and minimum development cost

Result:

Costly ground operations
Costly mission planning
Costly flight operations

Sea Launch

Courtesy of the Sea Launch Company

Zenit Rocket designed to strict operational requirements

Result:

Automation and robust design Simple and cost effective operations Great benefit to cost of ownership 2

Space Shuttle – Magnificent flying system but difficult and costly to operate

Initial Naive Concept of Ground Operations

Operational Reality

NASA, KSC Photo, dated September 25, 1979, index number "KSC-79PC-500"

Lack of Robustness and Design Margins Complicated flight Planning and Increased Cost

Problem

- The launch probability predictions for early Shuttle flights was less than 50%
 - More than half of the measured winds aloft violated the vehicle's certified boundaries

Corrective Actions

- System Integration led the evolution from a single ascent I-load, through seasonal I-loads, alternate I-loads, and finally arriving at DOLILU
- This process extended over a 10+ year period
- Concurrently the Program executed 3 load cycles (Integrated Vehicle Baseline Characterization - IVBC) combined with hardware modifications to expand vehicle certified envelopes
- Current launch probability is well in excess of 95%

Lesson

- Commit to a DOLILU approach during early development
 - Significantly improves margins
- Use additional margins on not well understood environments
- Will enhance robustness and simplify operations

Ascent Design Operations Evolution

Day-of-Launch I-Loads Evolution (10 years +)

Where did We go Wrong?

Problem

- Insufficient definition of operational requirements during development phase
 - Concentration on performance requirements but not on operational considerations
 - Shuttle design organizations were not responsible for operational cost
 - Very few incentives for development contractors

Result

 Very labor intensive (high operational cost) vehicle was developed and put into operations

Lesson

- Must have the Concept of Operations defined
- Define and levy the operational requirements on contractors to support the Concept of Operations
- Must have continuity and integration between designers, ground operations, and flight operations requirements during the developmental phase

Sea Launch Zenit Rocket Very Efficient and Easy to Operate Courtesy of the Sea Launch Company

Launch Platform

Courtesy of the Sea Launch Company 11

Assembly and Command Ship

Courtesy of the Sea Launch Company

12

Sea Launch – Zenit Derived Launch System

Courtesy of the Sea Launch Company

- Major integration of existing and new elements
 - Two stage Ukrainian Zenit
 - 3rd stage Russian Block DM
 - New payload accommodation & composite fairing
 - Modified semi-submersible oil drilling platform into a launch pad
 - New command and control and rocket assembly ship
- System was built and brought to operational state in less than 3.5 years
 - 24 flights to date

Sea Launch Operations

Courtesy of the Sea Launch Company

- Integration of rocket stages and payload at home port in Long Beach, CA
- Launches performed from the Equator, 154 degrees west (south of Hawaii)

Small Team performs ground checkout and launch

		I
	Ground Processing	Launch
	Team	Team*
Americans	80	40
Russians	200	140
Ukrainians	50	50
Norwegians	75	70
Totals	405	300

^{*} Launch Team is a subset of the Ground Processing Team; Ground Processing team members that are not required to participate in launch at sea are sent back to their companies and are off the Sea Launch payroll N BOEING

Lessons Learned from Sea Launch

- Zenit extremely automated launch vehicle
 - Very little interaction with crew during checkout, pre-launch, and flight
- Single string accountability, no duplications of effort (to some extent driven by export compliance restrictions)
- Low operational cost benefited from original design criteria of Zenit
 - Rollout to pad, fuel and launch in 90 minutes
 - Allows very little time for ground or flight crew involvement
 - Imposes requirements for automatic processes

The Big Lesson

- If we want simple and cost effective operations we must design for operations
 - Shuttle designed for performance and minimum development cost
 - Sea Launch Zenit Rocket designed to strict operational requirements
- NASA is in control of operations destiny of new programs
 - Narrow window of opportunity

